1
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
Consider the differential equation
$${{{d^2}y\left( t \right)} \over {d{t^2}}} + 2{{dy\left( t \right)} \over {dt}} + y\left( t \right) = \delta \left( t \right)$$
with $$y\left( t \right)\left| {_{t = 0} = - 2} \right.$$ and $${{dy} \over {dt}}\left| {_{t = 0}} \right. = 0.$$

The numerical value of $${{dy} \over {dt}}\left| {_{t = 0}.} \right.$$ is

A
$$-2$$
B
$$-1$$
C
$$0$$
D
$$1$$
2
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
The Dirac delta Function $$\delta \left( t \right)$$ is defined as
A
$$\delta \left( t \right) = \left\{ {\matrix{ 1 & {t = 0} \cr {0\,{\,^,}} & {otherwise} \cr } } \right.$$
B
$$\delta \left( t \right) = \left\{ {\matrix{ \infty & {t = 0} \cr {0\,\,,} & {otherwise} \cr } } \right.$$
C
$$\delta \left( t \right) = \left\{ {\matrix{ 1 & {t = 0} \cr {0\,\,,} & {otherwise} \cr } } \right.$$ and $$\int\limits_{ - \infty }^\infty {\delta \left( t \right)\,dt = 1} $$
D
$$\delta \left( t \right) = \left\{ {\matrix{ \infty & {t = 0} \cr {0\,\,,} & {otherwise} \cr } } \right.$$ and $$\int\limits_{ - \infty }^\infty {\delta \left( t \right)\,dt = 1} $$
3
GATE ECE 2000
MCQ (Single Correct Answer)
+2
-0.6
If $$\,\,\,$$ $$L\left\{ {f\left( t \right)} \right\} = {{s + 2} \over {{s^2} + 1}},\,\,L\left\{ {g\left( t \right)} \right\} = {{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}},$$
$$h\left( t \right) = \int\limits_0^t {f\left( T \right)} g\left( {t - T} \right)dT$$
then $$L\left\{ {h\left( t \right)} \right\}$$ is _______________.
A
$${{{s^2} + 1} \over {s + 3}}$$
B
$${1 \over {s + 3}}$$
C
$${{{s^2} + 1} \over {\left( {s + 3} \right)\left( {s + 2} \right)}} + {{s + 2} \over {{s^2} + 1}}$$
D
None
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12