1
GATE ECE 2011
MCQ (Single Correct Answer)
+1
-0.3
A system is defined by its impulse response $$h\left( n \right) = {2^n}\,u\left( {n - 2} \right).$$ The system is
2
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Two discrete time systems with impulse responses $${h_1}\left[ n \right]\, = \delta \left[ {n - 1} \right]$$ and $${h_2}\left[ n \right]\, = \delta \left[ {n - 2} \right]$$ are connected in cascade. The overall impulse response of the cascaded system is
3
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
The impulse response $$h\left[ n \right]$$ of a linear time-invariant system is given by $$h\left[ n \right]$$ $$ = u\left[ {n + 3} \right] + u\left[ {n - 2} \right] - 2\,u\left[ {n - 7} \right],$$ where $$u\left[ n \right]$$ is the unit step sequence. The above system is
4
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
A sequence $$x\left( n \right)$$ with the $$z$$-transform $$X\left( z \right)$$ $$ = {z^4} + {z^2} - 2z + 2 - 3{z^{ - 4}}$$ is applied as an input to a linear, time-invariant system with the impulse response $$h\left( n \right) = 2\delta \left( {n - 3} \right)$$
where $$\matrix{ {\delta \left( n \right) = 1,} & {n = 0} \cr {0,} & {otherwise} \cr } $$
The output at $$n = 4$$ is
where $$\matrix{ {\delta \left( n \right) = 1,} & {n = 0} \cr {0,} & {otherwise} \cr } $$
The output at $$n = 4$$ is
Questions Asked from Discrete Time Linear Time Invariant Systems (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics