1
GATE EE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A distribution feeder of $$1$$ $$km$$ length having resistance, but negligible reactance, is fed from both the ends by $$400$$ $$V,$$ $$50$$ $$Hz$$ balanced sources. Both voltage sources $${S_1}$$ and $${S_2}$$ are in phase. The feeder supplies concentrated loads of unity power factor as shown in the figure. GATE EE 2014 Set 1 Power System Analysis - Parameters and Performance of Transmission Lines Question 27 English

The contributions of $${S_1}$$ and $${S_2}$$ in $$100$$ $$A$$ current supplied at location $$P$$ respectively, are

A
$$75$$ $$A$$ and $$25A$$
B
$$50A$$ and $$50A$$
C
$$25A$$ to $$75A$$
D
$$0A$$ and $$100A$$
2
GATE EE 2012
MCQ (Single Correct Answer)
+2
-0.6
For the system shown below, SD1 and SD2 are complex power demands at bus $$1$$ and bus $$2$$ respectively. If $$\left| {{V_2}} \right| = 1$$ pu, the VAR rating of the capacitor (QG2) connected at bus $$2$$ is GATE EE 2012 Power System Analysis - Parameters and Performance of Transmission Lines Question 28 English
A
$$0.2$$ pu
B
$$0.268$$ pu
C
$$0.312$$ pu
D
$$0.4$$ pu
3
GATE EE 2011
MCQ (Single Correct Answer)
+2
-0.6
A lossy capacitor $${C_x}$$, rated for operation at $$5$$ $$kV,$$ $$50$$ $$Hz$$ is represented by an equivalent circuit with an ideal capacitor $${C_p}$$ in parallel with a resistor $${R_p}$$. The value $${C_p}$$ is found to be $$0.102$$ $$\mu F$$ and the value of $${R_p}$$ $$=$$ $$1.25$$ $$M\Omega .$$ Then the power loss and $$tan\delta $$ of the lossy capacitor operating at the rated voltage, respectively, are
A
$$10$$ $$W$$ and $$0.0002$$
B
$$10$$ $$W$$ and $$0.0025$$
C
$$20$$ $$W$$ and $$0.025$$
D
$$20$$ $$W$$ and $$0.04$$
4
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
A $$50$$ $$Hz$$ synchronous generator is initially connected to a long lossless transmission line which is open circuited at the receiving end. With the field voltage held constant, the generator is disconnected from the transmission line. Which of the following may be said about the steady state terminal voltage and field current of the generator?
A
The magnitude of terminal voltage decreases, and the field current does not change.
B
The magnitude of terminal voltage increases, and the field current does not change.
C
The magnitude of terminal voltage increases, and the field current increases.
D
The magnitude of terminal voltage does not change, and the field current decreases.
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12