1
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a three-phase, $$50Hz,$$ $$11$$ $$kV$$ distribution system. Each of the conductors is suspended by an insulator string having two identical porcelain insulators. The self capacitance of the insulator is $$5$$ times the shunt capacitance between the link an the ground, as shown in the figure. The voltage across the two insulators are GATE EE 2010 Power System Analysis - Parameters and Performance of Transmission Lines Question 31 English
A
$${e_1} = 3.74\,kV,\,{e_2} = 2.61\,kV$$
B
$${e_1} = 3.46\,kV,\,{e_2} = 2.89\,kV$$
C
$${e_1} = 6.0\,kV,\,{e_2} = 4.23\,kV$$
D
$${e_1} = 5.5\,kV,\,{e_2} = 5.5\,kV$$
2
GATE EE 2010
MCQ (Single Correct Answer)
+2
-0.6
Consider a three-core, three phase, $$50$$ $$Hz$$, $$11$$ $$kV$$ cable whose conductors are denoted as $$R, Y$$ and $$B$$ in the figure. The inter-phase capacitance $$\left( {{C_1}} \right)$$ between each pair of conductors is $$0.2$$ $$\mu F$$ and the capacitance between each line conductor and the sheath is $$0.4$$ $$\mu F$$ . The per-phase charging current is GATE EE 2010 Power System Analysis - Parameters and Performance of Transmission Lines Question 32 English
A
$$2.0$$ $$A$$
B
$$2.4$$ $$A$$
C
$$2.7$$ $$A$$
D
$$3.5$$ $$A$$
3
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
Match the items List-$${\rm I}$$ (To) with the items in List-$${\rm II}$$ (Use) and select the correct answer using the codes given below the lists.

List-$${\rm I}$$
$$A.$$ improve power factor
$$B.$$ reduce the current ripples
$$C.$$ increase the power flow in line
$$D$$ reduce the Ferranti effect

List-$${\rm II}$$
$$1.$$ shunt reactor
$$2.$$ shunt capacitor
$$3.$$ series capacitor
$$4.$$ series reactor

A
$$a \to 2,\,\,b \to 3,\,\,c \to 4,\,\,d \to 1$$
B
$$a \to 2,\,\,b \to 4,\,\,c \to 3,\,\,d \to 1$$
C
$$a \to 4,\,\,b \to 3,\,\,c \to 1,\,\,d \to 2$$
D
$$a \to 4,\,\,b \to 1,\,\,c \to 3,\,\,d \to 2$$
4
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
A lossless transmission line having Surge Impedance Loading $$(SIL)$$ of $$2280$$ $$MW.$$ A Series capacitive compensation of $$30$$% is emplaced. Then $$SIL$$ of the compensated transmission line will be
A
$$1835$$ $$MW$$
B
$$2280$$ $$MW$$
C
$$2725$$ $$MW$$
D
$$3257$$ $$MW$$
GATE EE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12