1
GATE EE 2005
+2
-0.6
At an industrial sub-station with a $$4$$ $$MW$$ load, a capacitor of $$2$$ MVAR is installed to maintain the load power factor at $$0.97$$ lagging. If the capacitor goes out of service, the load power factor becomes
A
$$0.85$$ lag
B
$$1.00$$ lag
C
$$0.80$$ lag
D
$$0.90$$ lag
2
GATE EE 2004
+2
-0.6
A lightning stroke discharges impulse current of $$10$$ kA (peak) on a $$400$$ kV transmission line having surge impedance of $$250\,\Omega$$. The magnitude of transient over-voltage traveling waves in either direction assuming equal distribution form the point of lightning strike will be
A
$$1250$$ kV
B
$$1650$$ kV
C
$$2500$$ kV
D
$$2900$$ kV
3
GATE EE 2004
+2
-0.6
A $$800$$ $$kV$$ transmission line is having per phase line inductance of $$1.1$$ $$mH/km$$ and per phase line capacitance of $$11.68$$ $$nF/km.$$ Ignoring the length of the line, its ideal power transfer capability in $$MW$$ is
A
$$1204$$ $$MW$$
B
$$1504$$ $$MW$$
C
$$2085$$ $$MW$$
D
$$2606$$ $$MW$$
4
GATE EE 2004
+2
-0.6
The generalized circuit constants of a $$3$$-phase, $$220$$ $$kV$$ rated voltage, medium length transmission line are $$A = D = 0.936 + j\,0.016 = 0.936\angle {0.98^ \circ }$$
$$B = 33.5 + j138 = 142.0\angle {76.4^ \circ }\,\Omega$$
$$\,C = \left( { - 5.18 + j914} \right) \times \,{10^{ - 6}}\,\Omega$$
If the load at the receiving end is $$50$$ MW at $$220$$ $$kV$$ with a power factor of 0.9 lagging, then magnitude of line to line sending end voltage should be
A
$$133.23$$ $$kV$$
B
$$220.00$$ $$kV$$
C
$$230.78$$ $$kV$$
D
$$246.30$$ $$kV$$
EXAM MAP
Medical
NEET