1
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Consider the given data with frequency distribution

$$ \begin{array}{ccccccc} x_i & 3 & 8 & 11 & 10 & 5 & 4 \\ f_i & 5 & 2 & 3 & 2 & 4 & 4 \end{array} $$

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The mean of the above data is (1) 2.5
(Q) The median of the above data is (2) 5
(R) The mean deviation about the mean of the above data is (3) 6
(S) The mean deviation about the median of the above data is (4) 2.7
(5) 2.4

The correct option is:
A
$(P) \rightarrow(3) ~~ (Q) \rightarrow(2) ~~ (R) \rightarrow(4) ~~ (S) \rightarrow(5)$
B
$(P) \rightarrow(3) ~~ (Q) \rightarrow(2) ~~ (R) \rightarrow(1) ~~ (S) \rightarrow(5)$
C
$(P) \rightarrow(2) ~~ (Q) \rightarrow(3) ~~ (R) \rightarrow(4) ~~ (S) \rightarrow(1) $
D
$(P) \rightarrow(3) ~~ (Q) \rightarrow(3) ~~ (R) \rightarrow(5) ~~ (S) \rightarrow(5)$
2
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $\ell_1$ and $\ell_2$ be the lines $\vec{r}_1=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_2=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_1$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_2$ and $H$. Let $H_0$ be a plane in $X$ for which $d\left(H_0\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The value of $d\left(H_0\right)$ is (1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from $H_0$ is (2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from $H_0$ is (3) 0
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_0$ is (4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
A
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1) $$
B
$$ (P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1) $$
C
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2) $$
D
$$ (P) \rightarrow(5) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(4) \quad(S) \rightarrow(2) $$
3
JEE Advanced 2023 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $z$ be a complex number satisfying $|z|^3+2 z^2+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) $|z|^2$ is equal to (1) 12
(Q) $|z-\bar{z}|^2$ is equal to (2) 4
(R) $|z|^2+|z+\bar{z}|^2$ is equal to (3) 8
(S) $|z+1|^2$ is equal to (4) 10
(5) 7

The correct option is:
A
$$ (P) \rightarrow(1) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4) $$
B
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(5) $$
C
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1) $$
D
$$ (P) \rightarrow(2) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4) $$
4
JEE Advanced 2023 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language
A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass $m$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0=u_0 \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\vec{v}$ and reaches a maximum height $h_1$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement(s) is(are) correct?

JEE Advanced 2023 Paper 1 Online Physics - Impulse & Momentum Question 2 English
A
$\overrightarrow{\mathrm{u}}_0=\sqrt{2 g h} \hat{x}$
B
$\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$
C
$\theta=60^{\circ}$
D
$d / h_1=2 \sqrt{3}$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12