1
JEE Advanced 2023 Paper 1 Online
+3
-1
Consider the given data with frequency distribution

$$\begin{array}{ccccccc} x_i & 3 & 8 & 11 & 10 & 5 & 4 \\ f_i & 5 & 2 & 3 & 2 & 4 & 4 \end{array}$$

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The mean of the above data is (1) 2.5
(Q) The median of the above data is (2) 5
(R) The mean deviation about the mean of the above data is (3) 6
(S) The mean deviation about the median of the above data is (4) 2.7
(5) 2.4

The correct option is:
A
$(P) \rightarrow(3) ~~ (Q) \rightarrow(2) ~~ (R) \rightarrow(4) ~~ (S) \rightarrow(5)$
B
$(P) \rightarrow(3) ~~ (Q) \rightarrow(2) ~~ (R) \rightarrow(1) ~~ (S) \rightarrow(5)$
C
$(P) \rightarrow(2) ~~ (Q) \rightarrow(3) ~~ (R) \rightarrow(4) ~~ (S) \rightarrow(1)$
D
$(P) \rightarrow(3) ~~ (Q) \rightarrow(3) ~~ (R) \rightarrow(5) ~~ (S) \rightarrow(5)$
2
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $\ell_1$ and $\ell_2$ be the lines $\vec{r}_1=\lambda(\hat{i}+\hat{j}+\hat{k})$ and $\vec{r}_2=(\hat{j}-\hat{k})+\mu(\hat{i}+\hat{k})$, respectively. Let $X$ be the set of all the planes $H$ that contain the line $\ell_1$. For a plane $H$, let $d(H)$ denote the smallest possible distance between the points of $\ell_2$ and $H$. Let $H_0$ be a plane in $X$ for which $d\left(H_0\right)$ is the maximum value of $d(H)$ as $H$ varies over all planes in $X$.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) The value of $d\left(H_0\right)$ is (1) $\sqrt{3}$
(Q) The distance of the point $(0,1,2)$ from $H_0$ is (2) $\frac{1}{\sqrt{3}}$
(R) The distance of origin from $H_0$ is (3) 0
(S) The distance of origin from the point of intersection of planes $y=z, x=1$ and $H_0$ is (4) $\sqrt{2}$
(5) $\frac{1}{\sqrt{2}}$

The correct option is:
A
$$(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$$
B
$$(P) \rightarrow(5) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(3) \quad(S) \rightarrow(1)$$
C
$$(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(2)$$
D
$$(P) \rightarrow(5) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(4) \quad(S) \rightarrow(2)$$
3
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $z$ be a complex number satisfying $|z|^3+2 z^2+4 \bar{z}-8=0$, where $\bar{z}$ denotes the complex conjugate of $z$. Let the imaginary part of $z$ be nonzero.

Match each entry in List-I to the correct entries in List-II.

List - I List - II
(P) $|z|^2$ is equal to (1) 12
(Q) $|z-\bar{z}|^2$ is equal to (2) 4
(R) $|z|^2+|z+\bar{z}|^2$ is equal to (3) 8
(S) $|z+1|^2$ is equal to (4) 10
(5) 7

The correct option is:
A
$$(P) \rightarrow(1) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4)$$
B
$$(P) \rightarrow(2) \quad(Q) \rightarrow(1) \quad(R) \rightarrow(3) \quad(S) \rightarrow(5)$$
C
$$(P) \rightarrow(2) \quad(Q) \rightarrow(4) \quad(R) \rightarrow(5) \quad(S) \rightarrow(1)$$
D
$$(P) \rightarrow(2) \quad(Q) \rightarrow(3) \quad(R) \rightarrow(5) \quad(S) \rightarrow(4)$$
4
JEE Advanced 2023 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
A slide with a frictionless curved surface, which becomes horizontal at its lower end, is fixed on the terrace of a building of height $3 h$ from the ground, as shown in the figure. A spherical ball of mass $m$ is released on the slide from rest at a height $h$ from the top of the terrace. The ball leaves the slide with a velocity $\vec{u}_0=u_0 \hat{x}$ and falls on the ground at a distance $d$ from the building making an angle $\theta$ with the horizontal. It bounces off with a velocity $\vec{v}$ and reaches a maximum height $h_1$. The acceleration due to gravity is $g$ and the coefficient of restitution of the ground is $1 / \sqrt{3}$. Which of the following statement(s) is(are) correct?

A
$\overrightarrow{\mathrm{u}}_0=\sqrt{2 g h} \hat{x}$
B
$\vec{v}=\sqrt{2 g h}(\hat{x}-\hat{z})$
C
$\theta=60^{\circ}$
D
$d / h_1=2 \sqrt{3}$
EXAM MAP
Medical
NEET