1
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $\tan ^{-1}(x) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, for $x \in \mathbb{R}$. Then the number of real solutions of the equation $\sqrt{1+\cos (2 x)}=\sqrt{2} \tan ^{-1}(\tan x)$ in the set $\left(-\frac{3 \pi}{2},-\frac{\pi}{2}\right) \cup\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ is equal to :
Your input ____
2
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $n \geq 2$ be a natural number and $f:[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$ f(x)= \begin{cases}n(1-2 n x) & \text { if } 0 \leq x \leq \frac{1}{2 n} \\\\ 2 n(2 n x-1) & \text { if } \frac{1}{2 n} \leq x \leq \frac{3}{4 n} \\\\ 4 n(1-n x) & \text { if } \frac{3}{4 n} \leq x \leq \frac{1}{n} \\\\ \frac{n}{n-1}(n x-1) & \text { if } \frac{1}{n} \leq x \leq 1\end{cases} $$

If $n$ is such that the area of the region bounded by the curves $x=0, x=1, y=0$ and $y=f(x)$ is 4 , then the maximum value of the function $f$ is :
Your input ____
3
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $7 \overbrace{5 \cdots 5}^r 7$ denote the $(r+2)$ digit number where the first and the last digits are 7 and the remaining $r$ digits are 5 . Consider the sum $S=77+757+7557+\cdots+7 \overbrace{5 \cdots 5}^{98}7$. If $S=\frac{7 \overbrace{5 \cdots 5}^{99}7+m}{n}$, where $m$ and $n$ are natural numbers less than 3000 , then the value of $m+n$ is
Your input ____
4
JEE Advanced 2023 Paper 1 Online
Numerical
+4
-0
Change Language
Let $A=\left\{\frac{1967+1686 i \sin \theta}{7-3 i \cos \theta}: \theta \in \mathbb{R}\right\}$. If $A$ contains exactly one positive integer $n$, then the value of $n$ is
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12