1
JEE Advanced 2023 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Let $f:[0,1] \rightarrow[0,1]$ be the function defined by $f(x)=\frac{x^3}{3}-x^2+\frac{5}{9} x+\frac{17}{36}$. Consider the square region $S=[0,1] \times[0,1]$. Let $G=\{(x, y) \in S: y>f(x)\}$ be called the green region and $R=\{(x, y) \in S: y < f(x)\}$ be called the red region. Let $L_h=\{(x, h) \in S: x \in[0,1]\}$ be the horizontal line drawn at a height $h \in[0,1]$. Then which of the following statements is(are) true?
A
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_h$ equals the area of the green region below the line $L_h$
B
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line $L_h$ equals the area of the red region below the line $L_h$
C
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the green region above the line $L_h$ equals the area of the red region below the line $L_h$
D
There exists an $h \in\left[\frac{1}{4}, \frac{2}{3}\right]$ such that the area of the red region above the line $L_h$ equals the area of the green region below the line $L_k$
2
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $f:(0,1) \rightarrow \mathbb{R}$ be the function defined as $f(x)=\sqrt{n}$ if $x \in\left[\frac{1}{n+1}, \frac{1}{n}\right)$ where $n \in \mathbb{N}$. Let $g:(0,1) \rightarrow \mathbb{R}$ be a function such that $\int\limits_{x^2}^x \sqrt{\frac{1-t}{t}} d t < g(x) < 2 \sqrt{x}$ for all $x \in(0,1)$. Then $\lim\limits_{x \rightarrow 0} f(x) g(x)$
A
does NOT exist
B
is equal to 1
C
is equal to 2
D
is equal to 3
3
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $Q$ be the cube with the set of vertices $\left\{\left(x_1, x_2, x_3\right) \in \mathbb{R}^3: x_1, x_2, x_3 \in\{0,1\}\right\}$. Let $F$ be the set of all twelve lines containing the diagonals of the six faces of the cube $Q$. Let $S$ be the set of all four lines containing the main diagonals of the cube $Q$; for instance, the line passing through the vertices $(0,0,0)$ and $(1,1,1)$ is in $S$. For lines $\ell_1$ and $\ell_2$, let $d\left(\ell_1, \ell_2\right)$ denote the shortest distance between them. Then the maximum value of $d\left(\ell_1, \ell_2\right)$, as $\ell_1$ varies over $F$ and $\ell_2$ varies over $S$, is :
A
$\frac{1}{\sqrt{6}}$
B
$\frac{1}{\sqrt{8}}$
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{\sqrt{12}}$
4
JEE Advanced 2023 Paper 1 Online
+3
-1
Let $X=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z}: \frac{x^2}{8}+\frac{y^2}{20}<1\right.$ and $\left.y^2<5 x\right\}$. Three distinct points $P, Q$ and $R$ are randomly chosen from $X$. Then the probability that $P, Q$ and $R$ form a triangle whose area is a positive integer, is :
A
$\frac{71}{220}$
B
$\frac{73}{220}$
C
$\frac{79}{220}$
D
$\frac{83}{220}$
EXAM MAP
Medical
NEET