1
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$S$$ be the area of the region enclosed by $$y = {e^{ - {x^2}}}$$, $$y=0$$, $$x=0$$, and $$x=1$$; then
A
$$S \ge {1 \over e}$$
B
$$S \ge 1 - {1 \over e}$$
C
$$S \le {1 \over 4}\left( {1 + {1 \over {\sqrt e }}} \right)$$
D
$$S \le {1 \over {\sqrt 2 }} + {1 \over {\sqrt e }}\left( {1 - {1 \over {\sqrt 2 }}} \right)$$
2
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$y(x)$$ satisfies the differential equation $$y' - y\,tan\,x = 2x\,secx$$ and $$y(0)=0,$$ then
A
$$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {8\sqrt 2 }}$$
B
$$y'\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {18}}$$
C
$$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over 9}$$
D
$$y'\left( {{\pi \over 3}} \right) = {{4\pi } \over 3} + {{2{\pi ^2}} \over {3\sqrt 3 }}$$
3
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the point $$T(2, 1, 4)$$ to $$QR,$$ then the length of the line segment $$PS$$ is
A
$${{1 \over {\sqrt 2 }}}$$
B
$${\sqrt 2 }$$
C
$$2$$
D
$${2\sqrt 2 }$$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then

A
a = 1, b = 4
B
a = 1, b = $$-$$4
C
a = 2, b = $$-$$3
D
a = 2, b = 3
JEE Advanced Papers
EXAM MAP