1
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$S$$ be the area of the region enclosed by $$y = {e^{ - {x^2}}}$$, $$y=0$$, $$x=0$$, and $$x=1$$; then
A
$$S \ge {1 \over e}$$
B
$$S \ge 1 - {1 \over e}$$
C
$$S \le {1 \over 4}\left( {1 + {1 \over {\sqrt e }}} \right)$$
D
$$S \le {1 \over {\sqrt 2 }} + {1 \over {\sqrt e }}\left( {1 - {1 \over {\sqrt 2 }}} \right)$$
2
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$y(x)$$ satisfies the differential equation $$y' - y\,tan\,x = 2x\,secx$$ and $$y(0)=0,$$ then
A
$$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {8\sqrt 2 }}$$
B
$$y'\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {18}}$$
C
$$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over 9}$$
D
$$y'\left( {{\pi \over 3}} \right) = {{4\pi } \over 3} + {{2{\pi ^2}} \over {3\sqrt 3 }}$$
3
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the point $$T(2, 1, 4)$$ to $$QR,$$ then the length of the line segment $$PS$$ is
A
$${{1 \over {\sqrt 2 }}}$$
B
$${\sqrt 2 }$$
C
$$2$$
D
$${2\sqrt 2 }$$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then

A
a = 1, b = 4
B
a = 1, b = $$-$$4
C
a = 2, b = $$-$$3
D
a = 2, b = 3
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12