1
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The point $$P$$ is the intersection of the straight line joining the points $$Q(2, 3, 5)$$ and $$R(1, -1, 4)$$ with the plane $$5x-4y-z=1.$$ If $$S$$ is the foot of the perpendicular drawn from the point $$T(2, 1, 4)$$ to $$QR,$$ then the length of the line segment $$PS$$ is
A
$${{1 \over {\sqrt 2 }}}$$
B
$${\sqrt 2 }$$
C
$$2$$
D
$${2\sqrt 2 }$$
2
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

If $$\mathop {\lim }\limits_{x \to \infty } \left( {{{{x^2} + x + 1} \over {x + 1}} - ax - b} \right) = 4$$, then

A
a = 1, b = 4
B
a = 1, b = $$-$$4
C
a = 2, b = $$-$$3
D
a = 2, b = 3
3
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$P = [{a_{ij}}]$$ be a 3 $$\times$$ 3 matrix and let $$Q = [{b_{ij}}]$$, where $${b_{ij}} = {2^{i + j}}{a_{ij}}$$ for $$1 \le i,j \le 3$$. If the determinant of P is 2, then the determinant of the matrix Q is

A
210
B
211
C
212
D
213
4
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1

Let $$f(x) = \left\{ {\matrix{ {{x^2}\left| {\cos {\pi \over x}} \right|,} & {x \ne 0} \cr {0,} & {x = 0} \cr } } \right.$$

x$$\in$$R, then f is

A
differentiable both at x = 0 and at x = 2.
B
differentiable at x = 0 but not differentiable at x = 2.
C
not differentiable at x = 0 but differentiable at x = 2.
D
differentiable neither at x = 0 nor at x = 2.
JEE Advanced Papers
EXAM MAP