A small mass m is attached to a massless string whose other end is fixed at P as shown in the figure. The mass is undergoing circular motion in the xy-plane with centre at O and constant angular speed $$\omega$$. If the angular momentum of the system, calculated about O and P are denoted by $${\overrightarrow L _O}$$ and $${\overrightarrow L _P}$$, respectively, then
A biconvex lens is formed with two planoconvex lenses as shown in the figure. Refractive index n of the first lens is 1.5 and that of the second lens is 1.2. Both curved surface are of the same radius of curvature R = 14 cm. For this biconvex lens, for an object distance of 40 cm, the image distance will be
A thin uniform rod, pivoted at O, is rotating in the horizontal plane with constant angular speed $$\omega$$, as shown in the figure. At time t = 0, a small insect starts from O and moves with constant speed v, with respect to the rod towards the other end. It reaches the end of the rod at t = T and stops. The angular speed of the system remains $$\omega$$ throughout. The magnitude of the torque (|$$\tau$$|) about O, as a function of time is best represented by which plot ?