1
IIT-JEE 2012 Paper 1 Offline
Numerical
+4
-0
Let $$p(x)$$ be a real polynomial of least degree which has a local maximum at $$x=1$$ and a local minimum at $$x=3$$. If $$p(1)=6$$ and $$p(3)=2$$, then $$p'(0)$$ is
Your input ____
2
IIT-JEE 2012 Paper 1 Offline
MCQ (Single Correct Answer)
+4
-1
The integral $\int \frac{\sec ^2 x}{(\sec x+\tan x)^{9 / 2}} d x$ equals (for some arbitrary constant $$K$$)
A
$-\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
B
$\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}-\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
C
$-\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
D
$\frac{1}{(\sec x+\tan x)^{11 / 2}}\left\{\frac{1}{11}+\frac{1}{7}(\sec x+\tan x)^2\right\}+K$
3
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Let $$S$$ be the area of the region enclosed by $$y = {e^{ - {x^2}}}$$, $$y=0$$, $$x=0$$, and $$x=1$$; then
A
$$S \ge {1 \over e}$$
B
$$S \ge 1 - {1 \over e}$$
C
$$S \le {1 \over 4}\left( {1 + {1 \over {\sqrt e }}} \right)$$
D
$$S \le {1 \over {\sqrt 2 }} + {1 \over {\sqrt e }}\left( {1 - {1 \over {\sqrt 2 }}} \right)$$
4
IIT-JEE 2012 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$y(x)$$ satisfies the differential equation $$y' - y\,tan\,x = 2x\,secx$$ and $$y(0)=0,$$ then
A
$$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {8\sqrt 2 }}$$
B
$$y'\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {18}}$$
C
$$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over 9}$$
D
$$y'\left( {{\pi \over 3}} \right) = {{4\pi } \over 3} + {{2{\pi ^2}} \over {3\sqrt 3 }}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12