1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0
The equation of the plane passing through the line of intersection of the planes $x+y+z=1$ and $3 x+4 y+5 z=2$ and perpendicular to the XY- plane is
A
$2 x+y-3=0$
B
$x-2 y+3=0$
C
$x-3 y-2=0$
D
$2 x-y+6=0$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The coordinates of the foot of the perpendicular drawn from a point $\mathrm{P}(-1,1,2)$ to the plane $2 x-3 y+z-11=0$ are

A
$\quad(2,-2,1)$
B
$\quad(2,-3,0)$
C
$(1,-2,3)$
D
$(4,1,6)$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{x-3}{1}=\frac{y-2}{1}=\frac{z-5}{-k}$ and $\frac{x-4}{\mathrm{k}}=\frac{y-3}{1}=\frac{\mathrm{z}-3}{2}$ are coplanar, hence $\mathrm{k}=$

A
1,2
B
$-2,3$
C
$-1,2$
D
$\frac{1}{2}, 1$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the shortest distance between the lines $\bar{r}_1=\alpha \hat{i}+2 \hat{j}+2 \hat{k}+\lambda(\hat{i}-2 \hat{j}+2 \hat{k}), \lambda \in \mathbb{R}, \alpha>0 \quad$ and $\bar{r}_2=-4 \hat{i}-\hat{k}+\mu(3 \hat{i}-2 \hat{j}-2 \hat{k}), \mu \in R$, is 9 , then the value of $\alpha$ is

A
4
B
6
C
8
D
3
MHT CET Subjects
EXAM MAP