1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k} \quad$ and $\frac{x-1}{\mathrm{k}}=\frac{y-4}{2}=\frac{\mathrm{z}-5}{1}$ are coplanar if

A
$\mathrm{k}=1$ or $\mathrm{k}=-1$
B
$\mathrm{k}=0$ or $\mathrm{k}=-3$
C
$\mathrm{k}=3$ or $\mathrm{k}=-3$
D
$\mathrm{k}=0$ or $\mathrm{k}=3$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}}{\sqrt{99}}$
B
$\frac{-\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D
$\frac{7 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}}{\sqrt{99}}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $a, b \in R$. If the mirror image of the point $\mathrm{p}(\mathrm{a}, 6,9)$ w.r.t. line $\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9)$, then $|a+b|$ is equal to

A
88
B
86
C
90
D
84
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

A
0 units
B
1 units
C
$\sqrt{2}$ units
D
$2 \sqrt{2}$ units
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12