1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is

A
$\sqrt{\frac{6}{7}}$ units
B
$\sqrt{\frac{3}{7}}$ units
C
$\sqrt{\frac{3}{14}}$ units
D
$\sqrt{\frac{5}{14}}$ units
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and perpendicular to it, is

A
$x+y-z+1=0$
B
$x+y-z-1=0$
C
$x+y+z+1=0$
D
$x-y-z+1=0$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

A
$2 \sqrt{3}$ sq.units
B
$4 \sqrt{13}$ sq.units
C
$\sqrt{13}$ sq.units
D
$4 \sqrt{3}$ sq.units
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

A
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
B
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
C
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
D
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
MHT CET Subjects
EXAM MAP