1
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The foot of the perpendicular drawn from the origin to the plane is $$(4,-2,5)$$, then the Cartesian equation of the plane is

A
$$4 x-2 y+5 z=45$$
B
$$-4 x+2 y+5 z=45$$
C
$$4 x-2 y+5 z+45=0$$
D
$$4 x+2 y-5 z+45=0$$
2
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A vector $$\overrightarrow{\mathrm{n}}$$ is inclined to $$\mathrm{X}$$-axis at $$45^{\circ}$$, $$\mathrm{Y}$$-axis at $$60^{\circ}$$ and at an acute angle to Z-axis If $$\overrightarrow{\mathrm{n}}$$ is normal to a plane passing through the point $$(-\sqrt{2}, 1,1)$$, then equation of the plane is

A
$$\sqrt{2} x+y+z=0$$
B
$$x+\sqrt{2} y+z=1$$
C
$$-\sqrt{2} x+y+2 z=5$$
D
$$x+y+\sqrt{2} z=1$$
3
MHT CET 2023 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the Cartesian equation of a line is $$6 x-2=3 y+1=2 z-2$$, then the vector equation of the line is

A
$$\overline{\mathrm{r}}=\left(\frac{1}{3} \hat{\mathrm{i}}-\frac{1}{3} \hat{\mathrm{j}}+\hat{\mathrm{k}}\right)+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$$
B
$$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$$
C
$$\overline{\mathrm{r}}=\left(\frac{-1}{3} \hat{\mathrm{i}}+\frac{1}{3} \hat{\mathrm{j}}+\hat{\mathrm{k}}\right)+\lambda(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$$
D
$$\overline{\mathrm{r}}=\left(\frac{1}{3} \hat{\mathrm{i}}-\frac{1}{3} \hat{\mathrm{j}}-\hat{\mathrm{k}}\right)+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$$
4
MHT CET 2021 21th September Evening Shift
MCQ (Single Correct Answer)
+2
-0

The direction cosines $$\ell, \mathrm{m}, \mathrm{n}$$ of the line $$\frac{\mathrm{x}+2}{2}=\frac{2 \mathrm{y}-5}{3} ; \mathrm{z}=-1$$ are

A
$$\ell= \pm \frac{1}{\sqrt{5}}, \mathrm{~m}=0, \mathrm{n}= \pm \frac{2}{\sqrt{5}}$$
B
$$\ell= \pm \frac{3}{5}, \mathrm{~m}= \pm \frac{4}{5}, \mathrm{n}=0$$
C
$$\ell= \pm \frac{4}{5}, \mathrm{~m}= \pm \frac{3}{5}, \mathrm{n}=0$$
D
$$\ell= \pm \frac{1}{\sqrt{3}}, \mathrm{~m}= \pm \frac{1}{\sqrt{3}}, \mathrm{n}= \pm \frac{1}{\sqrt{3}}$$
MHT CET Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEEBITSATMHT CET
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN