1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line L is passing through $(1,2,3)$. The distance of any point on the line L from the line $\overline{\mathrm{r}}=(3 \lambda-1) \hat{\mathrm{i}}+(-2 \lambda+3) \hat{\mathrm{j}}+(4+\lambda) \hat{\mathrm{k}}$ is constant. Then the line L does not pass through the point

A
$(4,0,4)$
B
$(-2,4,2)$
C
$(7,-2,5)$
D
$(-5,6,2)$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the plane $\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ from the origin is

A
$\frac{7}{\sqrt{38}}$ units
B
$\frac{1}{\sqrt{38}}$ units
C
$\frac{5}{\sqrt{38}}$ units
D
$\frac{2}{\sqrt{38}}$ units
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1} \sqrt{\frac{5}{14}}$, then the value of $\lambda$ is

A
$\frac{1}{3}$
B
$\frac{4}{5}$
C
$\frac{2}{3}$
D
$\frac{2}{5}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the point $(1, \alpha, \beta)$ lies on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$ and $\frac{x+2}{-1}=\frac{y+6}{2}, \mathrm{z}=1$, then $\alpha+\beta=$

A
3
B
7
C
-3
D
-7
MHT CET Subjects
EXAM MAP