1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{\sqrt{78}}$
B
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{5 \sqrt{3}}$
D
$\frac{5 \hat{i}+7 \hat{j}-\hat{k}}{5 \sqrt{3}}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

A
$14 x+10 y+9 z=13$
B
$14 x+10 y+9 z=33$
C
$14 x+10 y+9 z=-15$
D
$14 x+10 y+9 z=-33$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

A
$x+2 y-2 z=0$
B
$3 x+2 y-2 z=0$
C
$x-2 y+z=0$
D
$5 x+2 y-4 z=0$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equal to

A
$-$3
B
$-$6
C
9
D
4
MHT CET Subjects
EXAM MAP