1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1$ $\frac{x+1}{3}=\frac{y+2}{2}=\frac{z+1}{1}$ and $\mathrm{L}_2: \frac{x-2}{2}=\frac{y+2}{1}=\frac{z-3}{3}$ be the given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-5 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{\sqrt{78}}$
B
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{5 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{5 \sqrt{3}}$
D
$\frac{5 \hat{i}+7 \hat{j}-\hat{k}}{5 \sqrt{3}}$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and perpendicular to the planes $2 x-y-2 z=5$ and $3 x-6 y+2 z=7$ is

A
$14 x+10 y+9 z=13$
B
$14 x+10 y+9 z=33$
C
$14 x+10 y+9 z=-15$
D
$14 x+10 y+9 z=-33$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

A
$x+2 y-2 z=0$
B
$3 x+2 y-2 z=0$
C
$x-2 y+z=0$
D
$5 x+2 y-4 z=0$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $A(-4,5, P), B(3,1,4)$ and $C(-2,0, q)$ are the vertices of a triangle $A B C$ and $G(r, q, 1)$ is its centroid, then the value of $2 p+q-r$ is equal to

A
$-$3
B
$-$6
C
9
D
4
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12