1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vector equation of a line whose Cartesian equations are $y=2,4 x-3 z+5=0$ is

A
$\overline{\mathrm{r}}=(3 \hat{\mathrm{i}}+4 \mathrm{k})+\lambda\left(2 \hat{\mathrm{j}}+\frac{5}{3} \hat{\mathrm{k}}\right)$
B
$\overline{\mathrm{r}}=(3 \hat{\mathrm{i}}+4 \mathrm{k})+\lambda\left(2 \hat{\mathrm{j}}-\frac{5}{3} \hat{\mathrm{k}}\right)$
C
$\overline{\mathrm{r}}=\left(2 \hat{\mathrm{j}}+\frac{5}{3} \hat{\mathrm{k}}\right)+\lambda(3 \hat{\mathrm{i}}+4 \mathrm{k})$
D
$\overline{\mathrm{r}}=\left(2 \hat{\mathrm{j}}-\frac{5}{3} \hat{\mathrm{k}}\right)+\lambda(3 \hat{\mathrm{i}}+4 \mathrm{k})$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The Cartesian equation of the plane, passing through the points $(3,1,1),(1,2,3)$ and $(-1,4,2)$, is

A
$5 x+6 y-2 z-23=0$
B
$-5 x+6 y+2 z+23=0$
C
$5 x+6 y+2 z-23=0$
D
$5 x-6 y+2 z-23=0$
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through the point $(-1,3,-2)$ and perpendicular to each of the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x+2}{-3}=\frac{y-1}{2}=\frac{z+1}{5}$, is

A
$\frac{x+1}{2}=\frac{y-3}{7}=\frac{z+2}{4}$
B
$\frac{x+1}{-2}=\frac{y-3}{-7}=\frac{z+2}{4}$
C
$\frac{x+1}{2}=\frac{y-3}{7}=\frac{z+2}{-4}$
D
$\frac{x+1}{2}=\frac{y-3}{-7}=\frac{z+2}{4}$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $\ell x+m y-z=9$, then $\ell^2+m^2$ is

A
1
B
4
C
2
D
5
MHT CET Subjects
EXAM MAP