1
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The vector equation of the plane $\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}})+\mu(\hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$ in scalar product form is $\mathbf{r} \cdot(3 \hat{\mathbf{i}}+2 \hat{\mathbf{k}})=\alpha$, then $\alpha=\ldots$

A
2
B
3
C
1
D
0
2
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The direction ratios of the normal to the plane passing through origin and the line of intersection of the planes $x+2 y+3 z=4$ and $4 x+3 y+2 z=1$ are $\ldots \ldots$

A
$2,3,1$
B
$1,2,3$
C
$3,1,2$
D
$3,2,1$
3
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If line $\frac{2 x-4}{\lambda}=\frac{y-1}{2}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{3 y-1}{\lambda}=\frac{z-2}{1}$ are perpendicular to each other then $\lambda=$ ............

A
7
B
$-\frac{7}{6}$
C
6
D
$-\frac{6}{7}$
4
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Which of the following can not be the direction cosines of a line?

A
$\sqrt{\frac{1}{5}},-\sqrt{\frac{1}{2}}, \sqrt{\frac{3}{10}}$
B
$\frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
C
$\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}$
D
$\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0$
MHT CET Subjects
EXAM MAP