1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the shortest distance between the lines $\frac{x-\mathrm{k}}{2}=\frac{y-4}{3}=\frac{\mathrm{z}-3}{4}$ and $\frac{x-2}{4}=\frac{y-4}{6}=\frac{\mathrm{z}-7}{8}$ is $\frac{13}{\sqrt{29}}$, then $\mathrm{k}=$

A
1
B
-1
C
2
D
-2
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The acute angle between the lines $x=-2+2 \mathrm{t}, y=3-4 \mathrm{t}, \mathrm{z}=-4+\mathrm{t}$ and $x=-2-\mathrm{t}, y=3+2 \mathrm{t}, \mathrm{z}=-4+3 \mathrm{t}$ is

A
$\quad \cos ^{-1}\left(\frac{1}{\sqrt{6}}\right)$
B
$\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
C
$\sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$.
D
$\quad \cos ^{-1}\left(\frac{2}{\sqrt{6}}\right)$
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the plane $\frac{x}{3}+\frac{y}{2}-\frac{z}{4}=1$ cuts the co-ordinate axes at points $\mathrm{A}, \mathrm{B}$ and C , then the area of the triangle ABC is

A
$\frac{\sqrt{61}}{2}$ sq. units
B
$2 \sqrt{61}$ sq. units
C
$\sqrt{61}$ sq. units
D
$3 \sqrt{61}$ sq. units
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A plane passes through $(2,1,2)$ and $(1,2,1)$ and parallel to the line $2 x=3 y$ and $\mathrm{z}=1$, then the plane also passes through the point

A
$\quad(-6,2,0)$
B
$(6,-2,0)$
C
$(-2,0,1)$
D
$(2,0,1)$
MHT CET Subjects
EXAM MAP