1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point of intersection of the planes $2 x-y+z-3=0$ and $4 x-3 y+5 z+9=0$ and parallel to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z-3}{5}$ is $\alpha x+\beta y+\gamma z+d=0$ Then $\alpha+\beta+\gamma+d=$

A
48
B
-48
C
84
D
45
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(2,4,0)$ from the point of intersection of the lines $\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$ and $\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$ is

A
3 units
B
$3 \sqrt{3}$ units
C
2 units
D
$2 \sqrt{3}$ units
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The co-ordinates of the point where the line joining the points $(2,-3,1)$ and $(3,-4,-5)$ and intersects the plane $2 x+y+z=7$ are

A
$\quad(-1,2,7)$
B
$(1,2,3)$
C
$(2,1,2)$
D
$(1,-2,7)$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the line $\frac{x+1}{3}=\frac{y-k}{7}=\frac{z-4}{8}$ lies in the plane $2 x+\mathrm{p} y+7 z-41=0$ which is perpendicular to the plane $x+4 y-2 z+13=0$ then $\mathrm{k}=$

A
$\frac{16}{3}$
B
$\frac{-16}{3}$
C
$\frac{26}{3}$
D
$\frac{-26}{3}$
MHT CET Subjects
EXAM MAP