1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

When a photosensitive surface is irradiated by light of wavelengths '$$\lambda_1$$' and '$$\lambda_2$$', kinetic energies of emitted photoelectrons are 'E$$_1$$' and 'E$$_2$$' respectively. The work function of photosensitive surface is

A
$$\frac{\left(\lambda_1 E_1-\lambda_2 E_2\right)}{\left(\lambda_2-\lambda_1\right)}$$
B
$$\frac{\left(\lambda_1 \mathrm{E}_1+\lambda_2 \mathrm{E}_2\right)}{\left(\lambda_2-\lambda_1\right)}$$
C
$$\frac{\left(\lambda_1 \mathrm{E}_2-\lambda_2 \mathrm{E}_1\right)}{\left(\lambda_2-\lambda_1\right)}$$
D
$$\frac{\left(\lambda_1 E_2+\lambda_2 E_1\right)}{\left(\lambda_2-\lambda_1\right)}$$
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The graph of stopping potential $V_s$ against frequency $v$ of incident radiation is plotted for two different metals $P$ and $Q$ as shown in the graph. $\phi_p$ and $\phi_Q$ are work-functions of $P$ and $Q$ respectively, then

MHT CET 2020 19th October Evening Shift Physics - Dual Nature of Radiation Question 37 English

A
$\phi_P>\phi_Q$
B
$\phi_P<\phi_Q$
C
$\phi_P=\phi_Q$
D
$\nu_0^{\prime}<\nu_0$
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

If the maximum kinetic energy of emitted electrons in photoelectric effect is $3.2 \times 10^{-19} \mathrm{~J}$ and the work-function for metal is $6.63 \times 10^{-19} \mathrm{~J}$, then stopping potential and threshold wavelength respectively are

[Planck's constant, $h=6.63 \times 10^{34} \mathrm{~J}$-s]

[Velocity of light, $c=3 \times 10^8 \frac{\mathrm{~m}}{\mathrm{~s}}$ ]

[Charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ ]

A
4V, 6000$\mathop A\limits^o$
B
3V, 4000$\mathop A\limits^o$
C
2V, 3000$\mathop A\limits^o$
D
1V, 1000$\mathop A\limits^o$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The light of wavelength $$\lambda$$ incident on the surface of metal having work function $$\phi$$ emits the electrons. The maximum velocity of electrons emitted is [ $$c=$$ velocity of light, $$h=$$ Planck's constant, $$m=$$ mass of electron]

A
$$\left[\frac{2(h v-\phi) \lambda}{m c}\right]$$
B
$$\left[\frac{2(h c-\lambda \phi)}{m \lambda}\right]^{1 / 2}$$
C
$$\left[\frac{2(h c-\lambda)}{m \lambda}\right]^{1 / 2}$$
D
$$\left[\frac{2(h c-\phi)}{m \lambda}\right]$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12