1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

A
$2 \sqrt{3}$ sq.units
B
$4 \sqrt{13}$ sq.units
C
$\sqrt{13}$ sq.units
D
$4 \sqrt{3}$ sq.units
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

A
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
B
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
C
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
D
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is

A
$-4 y-x+7 z=0$
B
$x-4 y-7 z=0$
C
$x-4 y+7 z=0$
D
$x+4 y+7 z=0$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The incentre of the triangle whose vertices are $P(0,3,0), Q(0,0,4)$ and $R(0,3,4)$ is

A
$(0,3,2)$
B
$(0,2,3)$
C
$(2,0,3)$
D
$(2,3,0)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12