1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

A
$2 \sqrt{3}$ sq.units
B
$4 \sqrt{13}$ sq.units
C
$\sqrt{13}$ sq.units
D
$4 \sqrt{3}$ sq.units
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line, through $\mathrm{A}(1,2,3)$ and perpendicular to the vector $2 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}$ and $\hat{i}+3 \hat{j}+2 \hat{k}$, is

A
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
B
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
C
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})$
D
$\overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $P$ be the image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through $P$ and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is

A
$-4 y-x+7 z=0$
B
$x-4 y-7 z=0$
C
$x-4 y+7 z=0$
D
$x+4 y+7 z=0$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The incentre of the triangle whose vertices are $P(0,3,0), Q(0,0,4)$ and $R(0,3,4)$ is

A
$(0,3,2)$
B
$(0,2,3)$
C
$(2,0,3)$
D
$(2,3,0)$
MHT CET Subjects
EXAM MAP