1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The point on the curve $4 y^2-4 y+2 x-1=0$ at which the tangent becomes parallel to Y -axis is

A
$\left(1, \frac{1}{2}\right)$
B
$\left(\frac{1}{2}, 1\right)$
C
$\left(-1,-\frac{1}{2}\right)$
D
$\left(\frac{1}{2}, 0\right)$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A particle moves along a curve $y=\frac{2 x^3-1}{3}$. The points on the curve at which the $y$ co-ordinate is changing 18 times the $x$ co-ordinate are

A
$\left(-3,-\frac{55}{3}\right),\left(3,-\frac{53}{3}\right)$
B
$\left(-3, \frac{53}{3}\right),\left(3, \frac{55}{3}\right)$
C
$\left(-3,-\frac{53}{3}\right),\left(3, \frac{55}{3}\right)$
D
$\left(-3,-\frac{55}{3}\right),\left(3, \frac{53}{3}\right)$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of motion of the particle is $\mathrm{s}=\mathrm{at}^2+\mathrm{bt}+\mathrm{c}$. If the displacement after 1 second is 20 m , velocity after 2 seconds is $30 \mathrm{~m} /$ seconds and the acceleration is $10 \mathrm{~m} /$ seconds $^2$, then

A
$a+c=2 b$
B
$\mathrm{a}+\mathrm{c}=\mathrm{b}$
C
$\mathrm{a}-\mathrm{c}=\mathrm{b}$
D
$a+c=3 b$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is

A
5
B
20
C
6
D
21
MHT CET Subjects
EXAM MAP