The left-hand derivative of $$\mathrm{f}(x)=[x] \sin (\pi x)$$, at $$x=\mathrm{k}, \mathrm{k}$$ is an integer and [.] is the greatest integer function, is
If $$\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+\mathrm{m} x}-\sqrt{1-\mathrm{m} x}}{x}, & -1 \leq x < 0 \\ \frac{2 x+1}{x-2} & , 0 \leq x \leq 1\end{array}\right.$$ is continuous in the interval $$[-1,1]$$, then $$\mathrm{m}$$ is equal to
Let $$\mathrm{S}=\left\{\mathrm{t} \in \mathrm{R} / \mathrm{f}(x)=|x-\pi|\left(\mathrm{e}^{|x|}-1\right) \sin |x|\right.$$ is not differentiable at $$\mathrm{t}\}$$, then $$\mathrm{S}$$ is
If $$\mathrm{f}(x)=\frac{4}{x^4}\left[1-\cos \frac{x}{2}-\cos \frac{x}{4}+\cos \frac{x}{2} \cdot \cos \frac{x}{4}\right]$$ is continuous at $$x=0$$, then $$\mathrm{f}(0)$$ is