1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The function f defined by $\mathrm{f}(x)=(x+2) \mathrm{e}^{-x}$ is

A
decreasing for all $x \in \mathbb{R}$
B
decreasing in $(-\infty,-1)$ and increasing in ( $-1, \infty$ )
C
decreasing in $(-1, \infty)$ and increasing in ( $-\infty,-1$ )
D
increasing for all $x \in \mathbb{R}$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=x(x+3) \mathrm{e}^{-\frac{x}{2}}$ satisfies all the conditions of Rolle's theorem in $[-3,0]$, then c is

A
0
B
-1
C
-2
D
-3
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A manufacturer produces $x$ items per week at a total cost of ₹ $\left(x^2+78 x+2500\right)$. The price per unit is given by $8 x=600-\mathrm{p}$ where ' p ' is the price of each unit. Then the maximum profit obtained is

A
₹ 5069
B
₹ 15138
C
₹ 7569
D
₹ 2500
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $2 \mathrm{f}(x)+3 \mathrm{f}\left(\frac{1}{x}\right)=x^2+1, x \neq 0$ and $y=5 x^2 \mathrm{f}(x)$, then $y$ is strictly increasing in

A
$\left(0, \frac{1}{2}\right)$
B
$\left(\frac{-2}{5}, 0\right)$
C
$\left(\frac{1}{2}, \frac{\sqrt{5}}{2}\right)$
D
$\left(\frac{-1}{2}, 0\right)$
MHT CET Subjects
EXAM MAP