1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the curve $x=\operatorname{acos}^3 \theta, y=\operatorname{asin}^3 \theta$ at $\theta=\frac{\pi}{4}$ is

A
$x+y=\frac{\mathrm{a}}{\sqrt{2}}$
B
$x+y=\frac{a}{2}$
C
$x+y=\frac{a}{2 \sqrt{2}}$
D
$x+y=\frac{\mathrm{a}}{8}$
2
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let C be a curve given by $y(x)=1+\sqrt{4 x-3}$, $x>\frac{3}{4}$. If P is a point on C , such that the tangent at P has slope $\frac{2}{3}$, then a point through which the normal at P passes, is

A
$(1,7)$
B
$(4,-3)$
C
$(3,-4)$
D
$(2,3)$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\log x}{x}(x>0)$, then it is increasing in

A
$(0, \mathrm{e})$
B
$(\mathrm{e}, \infty)$
C
$(0, \infty)$
D
$(-\infty, \infty)$
4
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $\frac{\log x}{x}$ is

A
$\mathrm{e}$
B
$\mathrm{2 e}$
C
$\frac{1}{\mathrm{e}}$
D
$\frac{2}{\mathrm{e}}$
MHT CET Subjects
EXAM MAP