1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle whose vertices are $i, \omega$ and $\omega^2$ is (Where $\omega$ is a complex cube root of unity other than $1, i$ is an imaginary number)__________ sq.units

A

$\frac{3 \sqrt{3}}{4}$

B

$\frac{\sqrt{3}}{2}$

C

$\frac{3 \sqrt{3}}{2}$

D

$\frac{\sqrt{3}}{4}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let z be the complex number such that $|z|+z=3+i$ where $i=\sqrt{-1}$, then $|z|=$

A

$\frac{\sqrt{34}}{3}$

B

$\frac{5}{3}$

C

$\frac{\sqrt{41}}{4}$

D

$\frac{5}{4}$

3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The modulus of the square root of the complex number $6+8 \mathrm{i}$ (where $\mathrm{i}=\sqrt{-1}$ ) is

A

$\sqrt{5}$

B

$2 \sqrt{5}$

C

$\sqrt{2} \cdot \sqrt{5}$

D

$2 \sqrt{10}$

4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A particle P starts from the point $\mathrm{Z}_0=1+2 \mathrm{i}$ where $\mathrm{i}=\sqrt{-1}$. It moves first horizontally away from the origin by 5 units and then vertically upwards parallel to positive Y -axis by 3 units to reach a point $Z_1$. From $Z_1$ the particle moves $\sqrt{2}$ units in the direction of vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin to reach at point $Z_2$, then $Z_2=$

A
$6+7 \mathrm{i}$
B
$-7+6 \mathrm{i}$
C
$-6+7 \mathrm{i}$
D
$7-6 \mathrm{i}$
MHT CET Subjects
EXAM MAP