1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be the complex number with $\operatorname{Im}(z)=10$ and satisfying $\frac{2 \mathrm{z}-\mathrm{n}}{2 \mathrm{z}+\mathrm{n}}=2 \mathrm{i}-1$, where $\mathrm{i}=\sqrt{-1}$, for some natural number ' $n$ ' then

A
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=10$
B
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=-10$
C
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=10$
D
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=-10$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Argument of the complex number $z=\frac{13-5 i}{4-9 i}, i=\sqrt{-1}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{3}$
3
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=-2+\sqrt{-3}$, then the value of $2 x^4+5 x^3+7 x^2-x+38$ is equal to

A
1
B
-2
C
3
D
5
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta},(\mathrm{i}=\sqrt{-1})$ will be purely imaginary if $\theta=$

A
$2 n \pi \pm \frac{\pi}{8}$, where $n \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{8}$, where $n \in \mathbb{Z}$
C
$n \pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$
D
$n \pi$, where $n \in \mathbb{Z}$
MHT CET Subjects
EXAM MAP