1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{5}{4}$
C
$\frac{5}{3}$
D
$\frac{\sqrt{41}}{4}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|$ is

A
$3 \omega$
B
$3 \omega(\omega-1)$
C
$3 \omega^2$
D
$3 \omega(1-\omega)$
3
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $Z$ be a complex number such that $|Z|+Z=2+i$ (where $i=\sqrt{-1})$, then $|Z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{\sqrt{41}}{4}$
C
$\frac{5}{3}$
D
$\frac{5}{4}$
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{w}=\frac{-1+i \sqrt{3}}{2}$, where $\mathrm{i}=\sqrt{-1}$, then the value of $\left(3+w+3 w^2\right)^4$ is

A
16
B
$-16$
C
16w
D
16w$^2$
MHT CET Subjects
EXAM MAP