1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Argument of the complex number $z=\frac{13-5 i}{4-9 i}, i=\sqrt{-1}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{3}$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=-2+\sqrt{-3}$, then the value of $2 x^4+5 x^3+7 x^2-x+38$ is equal to

A
1
B
-2
C
3
D
5
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta},(\mathrm{i}=\sqrt{-1})$ will be purely imaginary if $\theta=$

A
$2 n \pi \pm \frac{\pi}{8}$, where $n \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{8}$, where $n \in \mathbb{Z}$
C
$n \pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$
D
$n \pi$, where $n \in \mathbb{Z}$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{z}=x+\mathrm{i} y$ is a complex number, then the equation $\left|\frac{z+i}{z-i}\right|=\sqrt{3}$ represents the

A
circle with centre $(2,0)$ and radius $\sqrt{3}$
B
circle with centre $(0,2)$ and radius $\sqrt{3}$
C
circle with centre $(0,0)$ and radius $\sqrt{3}$
D
circle with centre $(0,-2)$ and radius $\sqrt{3}$
MHT CET Subjects
EXAM MAP