1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{z}=x+\mathrm{i} y$ be a complex number, where $x$ and $y$ are integers and $i=\sqrt{-1}$. Then the area of the rectangle whose vertices are the roots of the equation $\overline{z z}^3+\overline{\mathrm{zz}}^3=350$ is

A
48
B
32
C
40
D
80
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the complex number $z=x+i y$, where $i=\sqrt{-1}$, satisfies the condition $|z+1|=1$, then $z$ lies on

A
X -axis.
B
circle with centre ( 1,0 ) and radius 1 unit.
C
circle with centre $(-1,0)$ and radius 1 unit.
D
Y-axis.
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be a complex number such that $|z|+z=2+i$, where $i=\sqrt{-1}$, then $|z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{5}{4}$
C
$\frac{5}{3}$
D
$\frac{\sqrt{41}}{4}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\omega=-\frac{1}{2}+\mathrm{i} \frac{\sqrt{3}}{2}, \mathrm{i}=\sqrt{-1}$, then the value of $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1-\omega^2 & \omega^2 \\ 1 & \omega^2 & \omega^4\end{array}\right|$ is

A
$3 \omega$
B
$3 \omega(\omega-1)$
C
$3 \omega^2$
D
$3 \omega(1-\omega)$
MHT CET Subjects
EXAM MAP