1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta},(\mathrm{i}=\sqrt{-1})$ will be purely imaginary if $\theta=$

A
$2 n \pi \pm \frac{\pi}{8}$, where $n \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{8}$, where $n \in \mathbb{Z}$
C
$n \pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$
D
$n \pi$, where $n \in \mathbb{Z}$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{z}=x+\mathrm{i} y$ is a complex number, then the equation $\left|\frac{z+i}{z-i}\right|=\sqrt{3}$ represents the

A
circle with centre $(2,0)$ and radius $\sqrt{3}$
B
circle with centre $(0,2)$ and radius $\sqrt{3}$
C
circle with centre $(0,0)$ and radius $\sqrt{3}$
D
circle with centre $(0,-2)$ and radius $\sqrt{3}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The locus of the points represented by $|z+3|-|z-3|=6$, where $z$ is a complex number, is ….

A
Circle with radius 1 unit
B
Straight line with slope 1.
C
Parabola with focus $(1,0)$
D
X -axis
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The complex numbers $\sin x+i \cos 2 x$ and $\cos x$ - $\mathrm{i} \sin 2 x,(\mathrm{i}=\sqrt{-1})$ are conjugate to each other for,

A
$\quad x=\mathrm{n} \pi, \mathrm{n} \in \mathbb{Z}$
B
$x=\left(\mathrm{n}+\frac{1}{2}\right) \pi, \mathrm{n} \in \mathbb{Z}$
C
$x=(3 \mathrm{n}-1) \pi, \mathrm{n} \in \mathbb{Z}$
D
No value of $x$
MHT CET Subjects
EXAM MAP