1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

A
$-91$
B
$-85$
C
$85$
D
$91$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $z^2+z+1=0$ then $\left(z^3+\frac{1}{z^3}\right)^2+\left(z^4+\frac{1}{z^4}\right)^2=$ where $z=w=$ complex cube root of unity

A
4
B
1
C
5
D
2
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $\left.z \neq-1\right)$, then $\operatorname{Re}(w)$ is

A
0
B
$-\frac{1}{|z+1|^2}$
C
$\left|\frac{z}{z+1}\right| \cdot \frac{1}{|z+1|^2}$
D
$\frac{\sqrt{2}}{|z+1|^2}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{P}(x, y)$ denotes $\mathrm{z}=x+\mathrm{i} y x, y \in \mathbb{R}$ and $\mathrm{i}=\sqrt{-1}$ in Argand's plane and $\left|\frac{z-1}{z+2 i}\right|=1$, then the locus of P is

A
parabola
B
hyperbola
C
circle
D
straight line
MHT CET Subjects
EXAM MAP