1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $Z$ be a complex number such that $|Z|+Z=2+i$ (where $i=\sqrt{-1})$, then $|Z|$ is equal to

A
$\frac{4}{5}$
B
$\frac{\sqrt{41}}{4}$
C
$\frac{5}{3}$
D
$\frac{5}{4}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{w}=\frac{-1+i \sqrt{3}}{2}$, where $\mathrm{i}=\sqrt{-1}$, then the value of $\left(3+w+3 w^2\right)^4$ is

A
16
B
$-16$
C
16w
D
16w$^2$
3
MHT CET 2024 9th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $Z=\frac{-2}{1+\sqrt{3} i}, i=\sqrt{-1}$, then the value of $\arg Z$ is

A
$\frac{2 \pi}{3}$
B
$\frac{\pi}{3}$
C
$-\frac{\pi}{3}$
D
$\frac{4 \pi}{3}$
4
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are

A
$\mathrm{C} \equiv(3,0), \mathrm{r}=4$
B
$\mathrm{C} \equiv(6,0), \mathrm{r}=2$
C
$\mathrm{C} \equiv(0,3), \mathrm{r}=8$
D
$ \mathrm{C} \equiv(0,0), \mathrm{r}=2 \sqrt{2}$
MHT CET Subjects
EXAM MAP