1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left|\frac{\mathrm{z}}{1+\mathrm{i}}\right|=2$, where $\mathrm{z}=x+\mathrm{i} y, \mathrm{i}=\sqrt{-1}$ represents a circle, then centre ' $C$ ' and radius ' $r$ ' of the circle are

A
$\mathrm{C} \equiv(3,0), \mathrm{r}=4$
B
$\mathrm{C} \equiv(6,0), \mathrm{r}=2$
C
$\mathrm{C} \equiv(0,3), \mathrm{r}=8$
D
$ \mathrm{C} \equiv(0,0), \mathrm{r}=2 \sqrt{2}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

A
$-91$
B
$-85$
C
$85$
D
$91$
3
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $z^2+z+1=0$ then $\left(z^3+\frac{1}{z^3}\right)^2+\left(z^4+\frac{1}{z^4}\right)^2=$ where $z=w=$ complex cube root of unity

A
4
B
1
C
5
D
2
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $\left.z \neq-1\right)$, then $\operatorname{Re}(w)$ is

A
0
B
$-\frac{1}{|z+1|^2}$
C
$\left|\frac{z}{z+1}\right| \cdot \frac{1}{|z+1|^2}$
D
$\frac{\sqrt{2}}{|z+1|^2}$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12