1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A particle P starts from the point $\mathrm{Z}_0=1+2 \mathrm{i}$ where $\mathrm{i}=\sqrt{-1}$. It moves first horizontally away from the origin by 5 units and then vertically upwards parallel to positive Y -axis by 3 units to reach a point $Z_1$. From $Z_1$ the particle moves $\sqrt{2}$ units in the direction of vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin to reach at point $Z_2$, then $Z_2=$

A
$6+7 \mathrm{i}$
B
$-7+6 \mathrm{i}$
C
$-6+7 \mathrm{i}$
D
$7-6 \mathrm{i}$
2
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $z$ be the complex number with $\operatorname{Im}(z)=10$ and satisfying $\frac{2 \mathrm{z}-\mathrm{n}}{2 \mathrm{z}+\mathrm{n}}=2 \mathrm{i}-1$, where $\mathrm{i}=\sqrt{-1}$, for some natural number ' $n$ ' then

A
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=10$
B
$\mathrm{n}=20$ and $\operatorname{Re}(\mathrm{z})=-10$
C
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=10$
D
$\mathrm{n}=40$ and $\operatorname{Re}(\mathrm{z})=-10$
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Argument of the complex number $z=\frac{13-5 i}{4-9 i}, i=\sqrt{-1}$ is

A
$\frac{\pi}{4}$
B
$\frac{\pi}{2}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{3}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=-2+\sqrt{-3}$, then the value of $2 x^4+5 x^3+7 x^2-x+38$ is equal to

A
1
B
-2
C
3
D
5
MHT CET Subjects
EXAM MAP