1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{a}>0$ and $\mathrm{z}=\frac{(1+\mathrm{i})^2}{\mathrm{a}-\mathrm{i}}, \mathrm{i}=\sqrt{-1}$, has magnitude $\sqrt{\frac{2}{5}}$ then $\bar{z}$ is equal to

A
$\frac{1}{5}-\frac{3}{5} \mathrm{i}$
B
$-\frac{1}{5}-\frac{3}{5} \mathrm{i}$
C
$-\frac{1}{5}+\frac{3}{5} \mathrm{i}$
D
$-\frac{3}{5}-\frac{1}{5} \mathrm{i}$
2
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$z \in C$$ with $$\operatorname{Im}(z)=10$$ and it satisfies $$\frac{2 z-n}{2 z+n}=2 i-1, i=\sqrt{-1}$$ for some natural number $$\mathrm{n}$$, then

A
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
B
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=-10$$
C
$$\mathrm{n}=40$$ and $$\operatorname{Re}(\mathrm{z})=10$$
D
$$\mathrm{n}=20$$ and $$\operatorname{Re}(\mathrm{z})=10$$
3
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$a>0$$ and $$z=\frac{(1+i)^2}{a-i}, i=\sqrt{-1}$$, has magnitude $$\frac{2}{\sqrt{5}}$$, then $$\bar{z}$$ is

A
$$-\frac{2}{5}-\frac{4}{5} \mathrm{i}$$
B
$$-\frac{2}{5}+\frac{4}{5} \mathrm{i}$$
C
$$\frac{2}{5}-\frac{4}{5} \mathrm{i}$$
D
$$\frac{2}{5}+\frac{4}{5} \mathrm{i}$$
4
MHT CET 2023 13th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$(3 x+2)-(5 y-3) i$$ and $$(6 x+3)+(2 y-4) i$$ are conjugates of each other, then the value of $$\frac{x-y}{x+y}$$ is (where $$\left.i=\sqrt{-1}, x, y \in R\right)$$

A
$$-$$1
B
0
C
1
D
2
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12