1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\sqrt[3]{64 \cdot 04}$ is

A
4.00043
B
4.00076
C
4.00083
D
4.00064
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\mathrm{k} \sin x+2 \cos x}{\sin x+\cos x}$ is strictly increasing for all real values of $x$, then

A
$\mathrm{k}=1$
B
$\mathrm{k}>1$
C
$\mathrm{k}<2$
D
$\mathrm{k}>2$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the points of the curve $y=x^3$ are in the interval $[-2,2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2,2]$ are

A
0
B
$\pm \sqrt{3}$
C
$\pm \frac{2}{\sqrt{3}}$
D
$\frac{\sqrt{3}}{2}$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $x$ be the length of each of the equal sides of an isosceles triangle and $\theta$ be the angle between these sides. If $x$ is increasing at the rate $\frac{1}{12} \mathrm{~m} /$ hour and $\theta$ is increasing at the rate $\frac{\pi}{180} \mathrm{rad} /$ hour, then the rate at which area of the triangle is increasing when $x=12 \mathrm{~m}$ and $\theta=\frac{\pi}{4}$ is

A
$\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
B
$\quad \sqrt{2}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
C
$2\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
D
$\sqrt{3}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
MHT CET Subjects
EXAM MAP