1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the points of the curve $y=x^3$ are in the interval $[-2,2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2,2]$ are

A
0
B
$\pm \sqrt{3}$
C
$\pm \frac{2}{\sqrt{3}}$
D
$\frac{\sqrt{3}}{2}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $x$ be the length of each of the equal sides of an isosceles triangle and $\theta$ be the angle between these sides. If $x$ is increasing at the rate $\frac{1}{12} \mathrm{~m} /$ hour and $\theta$ is increasing at the rate $\frac{\pi}{180} \mathrm{rad} /$ hour, then the rate at which area of the triangle is increasing when $x=12 \mathrm{~m}$ and $\theta=\frac{\pi}{4}$ is

A
$\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
B
$\quad \sqrt{2}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
C
$2\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
D
$\sqrt{3}\left(\frac{\pi}{5}+\frac{1}{2}\right) \mathrm{m}^2 /$ hour
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A wire of length 8 units is cut into two parts which are bent respectively in the form of a square and a circle. The least value of the sum of the areas so formed is

A
$\frac{8}{\pi+4}$
B
$\frac{64}{\pi+4}$
C
$\frac{2}{\pi+4}$
D
$\frac{16}{\pi+4}$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The radius of the base of a cone is increasing at the rate $3 \mathrm{~cm} /$ minute and the altitude is decreasing at the rate $4 \mathrm{~cm} /$ minute . The rate at which the lateral surface area is changing, when the radius is 7 cm and altitude is 24 cm is

A
$75 \pi \mathrm{~cm}^2 /$ minute
B
$25 \pi \mathrm{~cm}^2 /$ minute
C
$3 \pi \mathrm{~cm}^2 /$ minute
D
$54 \pi \mathrm{~cm}^2 /$ minute
MHT CET Subjects
EXAM MAP