1
MHT CET 2021 23th September Morning Shift
+2
-0

$$\lim _\limits{x \rightarrow 1}\left[\frac{\sqrt{x}-1}{\log x}\right]=$$

A
$$\frac{1}{2}$$
B
2
C
$$-2$$
D
$$-\frac{1}{2}$$
2
MHT CET 2021 22th September Evening Shift
+2
-0

Let

\begin{aligned} f(x) & =x+a \sqrt{2} \sin x & & , 0 \leq x<\frac{\pi}{4} \\ & =2 x \cot x+b & & \frac{\pi}{4} \leq x<\frac{\pi}{2} \\ & =a \cos 2 x-b \sin x & & \frac{\pi}{2} \leq x \leq \pi \end{aligned}

If $$\mathrm{f}(\mathrm{x})$$ is continuous for $$0 \leq \mathrm{x} \leq \pi$$, then

A
$$a=\frac{\pi}{6}, b=\frac{\pi}{12}$$
B
$$\mathrm{a}=\frac{-\pi}{6}, \mathrm{~b}=\frac{-\pi}{12}$$
C
$$a=\frac{-\pi}{6}, b=\frac{\pi}{12}$$
D
$$a=\frac{\pi}{6}, b=\frac{-\pi}{12}$$
3
MHT CET 2021 22th September Evening Shift
+2
-0

$$\lim _\limits{x \rightarrow 2}(x-1)^{ \frac{1}{3 x-6}}=$$

A
$$\mathrm{e^2}$$
B
$$\mathrm{e}^3$$
C
$$\mathrm{e}^{\frac{1}{3}}$$
D
$$\mathrm{e}^{\frac{1}{2}}$$
4
MHT CET 2021 22th September Morning Shift
+2
-0

Let

$$f(x)\matrix{ { = |x| + 3,} & {if\,x \le - 3} \cr { = - 2x,} & {if\, - 3 < x < 3} \cr { = 6x - 2,} & {if\,x \ge 3} \cr }$$, then

A
$$f(x)$$ is discontinuous at both $$x=-3$$ as well as $$x=3$$
B
$$f(x)$$ is continuous at $$x=-3$$ but discontinuous at $$x=3$$
C
$$f(x)$$ is continuous at $$x=-3$$ as well as $$x=3$$
D
$$f(x)$$ of discontinuous at $$x=-3$$ but $$f(x)$$ is continuous at $$x=3$$
EXAM MAP
Medical
NEET