Let $$\mathrm{f}(x)=5-|x-2|$$ and $$\mathrm{g}(x)=|x+1|, x \in \mathrm{R}$$ If $$\mathrm{f}(x)$$ attains maximum value at $$\alpha$$ and $$\mathrm{g}(x)$$ attains minimum value at $$\beta$$, then $$\lim _\limits{x \rightarrow-\alpha \beta} \frac{(x-1)\left(x^2-5 x+6\right)}{x^2-6 x+8}$$ is equal to
$$\lim _\limits{x \rightarrow \infty} x^3\left\{\sqrt{x^2+\sqrt{1+x^4}}-x \sqrt{2}\right\}=$$
$$\lim _\limits{x \rightarrow 0} \frac{\sqrt{1+x \sin x}-\sqrt{\cos x}}{\tan ^2 \frac{x}{2}}=$$
If $$f(x)$$ is continuous on its domain $$[-2,2]$$, where
$$f(x)=\left\{\begin{array}{cc} \frac{\sin a x}{x}+3 & , \text { for }-2 \leq x<0 \\ 2 x+7 & , \text { for } 0 \leq x \leq 1 \\ \sqrt{x^2+8}-b & , \text { for } 1< x \leq 2 \end{array}\right.$$ $$\text { then the value of } 2 a+3 b \text { is }$$