1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let M and N be foots of the perpendiculars drawn from the point $\mathrm{P}(\mathrm{a}, \mathrm{a}, \mathrm{a})$ on the lines $x-y=0, \mathrm{z}=1$ and $x+y=0, \mathrm{z}=-1$ respectively and if $\angle \mathrm{MPN}=90^{\circ}$ then $\mathrm{a}^2=$

A
1
B
4
C
6
D
9
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ is the angle between the lines whose direction cosines are given by $6 \mathrm{mn}-2 \mathrm{n} l+5 l \mathrm{~m}=0$ and $3 l+\mathrm{m}+5 \mathrm{n}=0$, then $\sin \theta=$

A
$\frac{\sqrt{35}}{6}$
B
$\frac{1}{6}$
C
$\frac{\sqrt{37}}{6}$
D
$\frac{5}{6}$
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
The line passing through the points $(a, 1,6)$ and $(3,4, \mathrm{~b})$ crosses the $y z$-plane at $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$, then the value of $(3 a+4 b)$ is
A
19
B
16
C
21
D
23
4
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $x=y, z=0$ and $y=0, \mathrm{z}=0$ is

A
$30^{\circ}$
B
$45^{\circ}$
C
$60^{\circ}$
D
$90^{\circ}$
MHT CET Subjects
EXAM MAP