1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the foot of the perpendicular drawn from the origin to a plane is $\mathrm{P}(2,-1,4)$, then the equation of the plane is

A
$2 x+y+4 z-19=0$
B
$x+y+z-5=0$
C
$2 x-2 y-3 z+6=0$
D
$2 x-y+4 z-21=0$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let the plane passing through point $(2,1,-1)$ containing line joining the points $(1,3,2)$ and $(1,2,1)$ makes intercepts $\mathrm{p}, \mathrm{q}, \mathrm{r}$ on co-ordinate axes, then $\mathrm{p}+\mathrm{q}+\mathrm{r}=$

A
0
B
3
C
2
D
-2
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=6$ is $\cos ^{-1} \sqrt{\frac{5}{14}}$, then the value of $\lambda$ is

A
$\frac{2}{3}$
B
$\frac{4}{3}$
C
$\frac{1}{3}$
D
$\frac{5}{3}$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the line passing through the point of intersection of $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$ and also through the point ( $2,1,-2$ ) is

A

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-\hat{\mathrm{j}}-\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

B

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-\hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})$

C

$\frac{x+1}{3}=\frac{y+1}{2}=\frac{z+1}{-1}$

D

$\frac{x-1}{3}=\frac{y-1}{2}=\frac{z+1}{1}$

MHT CET Subjects
EXAM MAP