1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a x^{n+1}+b x^{-n}$, then $x^2 \frac{d^2 y}{d x^2}=$

A
$\mathrm{n}(\mathrm{n}+1) y$
B
  $(\mathrm{n}+1)(\mathrm{n}-2) y$
C
$\mathrm{n}(\mathrm{n}-2) y$
D
$(\mathrm{n}+1) \mathrm{y}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^{-1}\left(\frac{3 x}{2}-\frac{x^3}{2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{3}{2 \sqrt{x^2-4}}$
B
$\frac{3}{\sqrt{4-x^2}}$
C
$\frac{3}{2 \sqrt{1-x^2}}$
D
$\frac{4}{\sqrt{4-x^2}}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\log (x+y)=\sin (x+y)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is

A
2
B
1
C
0
D
$-$1
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$ and $\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$, then $\left(\frac{h^{\prime}(x)}{h(x)}\right)^2$ is equal to

A
$\frac{1}{\sqrt{1-x^2}}$
B
$\left(1-x^2\right)^2$
C
$\frac{1}{1-x^2}$
D
$\left(1-x^2\right)$
MHT CET Subjects
EXAM MAP