1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=x \cdot \mathrm{e}^{x(1-x)}$, then $\mathrm{f}(x)$ is

A
increasing in $\mathbb{R}$
B
increasing in $\left(\frac{-1}{2}, 1\right)$
C
decreasing in $\mathbb{R}$
D
decreasing in $\left[-\frac{1}{2}, 1\right]$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\sqrt[3]{64 \cdot 04}$ is

A
4.00043
B
4.00076
C
4.00083
D
4.00064
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\frac{\mathrm{k} \sin x+2 \cos x}{\sin x+\cos x}$ is strictly increasing for all real values of $x$, then

A
$\mathrm{k}=1$
B
$\mathrm{k}>1$
C
$\mathrm{k}<2$
D
$\mathrm{k}>2$
4
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the points of the curve $y=x^3$ are in the interval $[-2,2]$, where the slope of the tangents can be obtained by mean value theorem for the interval $[-2,2]$ are

A
0
B
$\pm \sqrt{3}$
C
$\pm \frac{2}{\sqrt{3}}$
D
$\frac{\sqrt{3}}{2}$
MHT CET Subjects
EXAM MAP