1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log (1+x)-\frac{2 x}{2+x}$ then $\mathrm{f}(x)$ is increasing in

A
$(-1, \infty)$
B
$(-\infty, \infty)$
C
$(0, \infty)$
D
$(1, \infty)$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle $\theta$, at which the curves $y=3^x$ and $y=7^x$ intersect, is given by

A
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1+(\log 3)(\log 7)}$
B
$\tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1+(\log 3)(\log 7)}$
C
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1-(\log 3)(\log 7)}$
D
$\quad \tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1-(\log 3)(\log 7)}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=x^3-6 x^2+\mathrm{ax}+\mathrm{b}$ satisfies the conditions of Rolle's theorem in $[1,3]$. Then the values of $a$ and $b$ are respectively

A
$11,-6$
B
$-6,11$
C
$-11,6$
D
$6,-11$
4
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{f}(x)=\frac{x}{2}+\frac{2}{x}, x \neq 0$ is strictly decreasing in

A
$(2,3)$
B
$(1,3)$
C
$(-2,2)$
D
$(1,2)$
MHT CET Subjects
EXAM MAP