1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to

A
5
B
10
C
15
D
0
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\sqrt[3]{0.026}$ is

A
0.2762
B
0.2632
C
0.2963
D
0.2692
3
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\left[\mathrm{e}^{4 x}\left(\frac{x-4}{x+3}\right)^{\frac{3}{4}}\right]$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x-4)(x+3)}\right]$
B
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[4+\frac{21}{4(x-4)(x+3)}\right]$
C
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{y}\left[4+\frac{21}{4(x-4)(x+3)}\right]$
D
$\frac{\mathrm{d} y}{\mathrm{~d} x}=y\left[4+\frac{21}{4(x+4)(x+3)}\right]$
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=a \sin x+b \cos x \quad$ (where $\mathrm{a}$ and $\mathrm{b}$ are constants), then $y^2+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2$ is

A
a function of $x$.
B
a function of $x$ and $y$.
C
a function of $y$.
D
a constant.
MHT CET Subjects
EXAM MAP