If $$\mathrm{f}(x)=\left\{\begin{array}{cc}\frac{x-3}{|x-3|}+\mathrm{a} & , \quad x < 3 \\ \mathrm{a}+\mathrm{b} & , \quad x=3 \\ \frac{|x-3|}{x-3}+\mathrm{b}, & x>3\end{array}\right.$$
Is continuous at $$x=3$$, then the value of $$\mathrm{a}-\mathrm{b}$$ is
$$\lim _\limits{x \rightarrow 2}\left[\frac{1}{x-2}-\frac{2}{x^3-3 x^2+2 x}\right]$$ is equal to
The left-hand derivative of $$\mathrm{f}(x)=[x] \sin (\pi x)$$, at $$x=\mathrm{k}, \mathrm{k}$$ is an integer and [.] is the greatest integer function, is
If $$\mathrm{f}(x)=\left\{\begin{array}{ll}\frac{\sqrt{1+\mathrm{m} x}-\sqrt{1-\mathrm{m} x}}{x}, & -1 \leq x < 0 \\ \frac{2 x+1}{x-2} & , 0 \leq x \leq 1\end{array}\right.$$ is continuous in the interval $$[-1,1]$$, then $$\mathrm{m}$$ is equal to